

Current Sensor

Model Number:

CM3A 500 H00

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuits.

Features

- Closed loop (compensated) current sensor using the Hall Effect.
- ♦ Galvanic separation between primary and secondary.
- ♦ Insulating plastic case recognized according to UL 94-V0.
- ♦ Very good linearity.
- ♦ High accuracy.
- Very low offset drift over temperature.
- ♦ No insertion loss.
- ♦ Standards:
 - IEC 60664-1:2020
 - IEC 61800-5-1:2022
 - IEC 62109-1:2010

Applications

- ♦ AC variable speed and servo motor drives.
- Uninterruptible Power Supplies (UPS).
- Static converters for DC motor drives.
- Switch Mode Power Supplies (SMPS).
- Power supplies for welding applications.
- ♦ Battery management.
- ♦ Wind energy inverter.
- Test and detection devices.

Safety

This sensor must be used according to IEC 61800-5-1.

This sensor must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacture's operating instructions.

Caution, risk of electrical shock!

When operating the sensor, certain parts of the module can carry hazardous voltage (e.g., Primary busbar, power supply). Ignore this warning can lead to injury and/or cause serious damage.

This sensor is a built-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Absolute maximum ratings(not operating)

Parameter	Symbol	Unit	Value
Supply voltage	V _C	V	± 25.2
Primary conductor temperature	T_{B}	$^{\circ}$ C	100
ESD rating, Human Body Model (HBM)	V_{ESD}	kV	4

^{*} Stresses above these ratings may cause permanent damage.

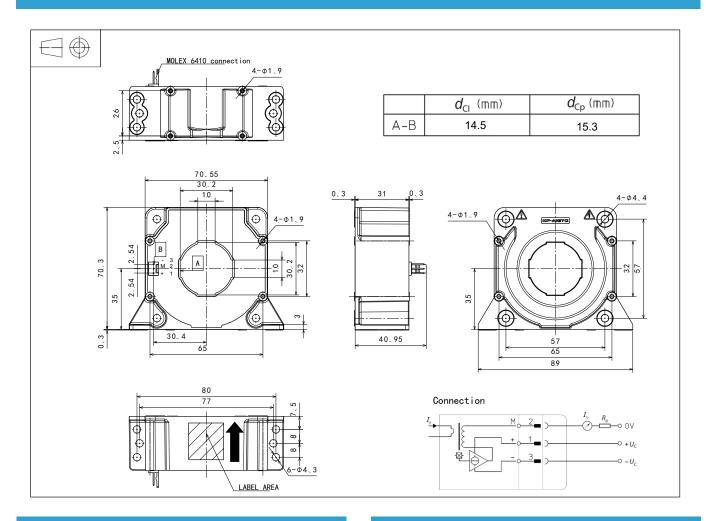
Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Ambient operating temperature	T_{A}	$^{\circ}$ C	-40		85	
Ambient storge temperature	Ts	$^{\circ}$ C	-40		90	
Mass	т	g		285		

Insulation coordination

Parameter	Symbol	Unit	Value	Comment
Rms voltage for AC insulation test @ 50Hz,1min	V_{d}	kV	3.8	According to IEC 60664-1
Impulse withstand voltage 1.2/50µs	V_{W}	kV	12.5	According to IEC 60664-1
Clearance (pri sec.)	d Cl	mm	14.5	
Creepage distance (pri sec.)	d Cp	mm	15.3	
Plastic case	-	1	UL94-V0	
Comparative traking index	CTI	PLC	3	
Application example	1	1	690V	Reinforced insulation,according to IEC61800-5-1, IEC 62109-1CATⅢ,PD2
Application example	-	-	1250V	Basic insulation,according to IEC 61800-5-1, IEC 62109-1CATⅢ,PD2

X Exposure to absolute maximum ratings for extended periods may degrade reliability.


Electrical data

% With $T_{\rm A}$ = 25°C, $V_{\rm C}$ = ±24V, $R_{\rm M}$ = 20 Ω ,unless otherwise noted.

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal rms current	I _{PN}	А	-500		500	
Primary current, measuring range	I _{PM}	А	-800		800	
Measuring resistance	R_{M}	Ω	0		80	@±15V, 25℃, ±500A
			0		64	@±15V, 85℃, ±500A
			0		28	@±15V, 25℃, ±800A
			0		12	@±15V, 85℃, ±800A
			0		165	@±24V, 25℃, ±500A
			0		149	@±24V, 85℃, ±500A
			0		82	@±24V, 25℃, ±800A
			0		65	@±24V, 85℃, ±800A
Secondary nominal rms current	I _{SN}	mA	-100		100	
Secondary coil resistance	Rs	Ω			54	@ 25℃
Secondary con resistance					70	@ 85℃
Secondary current,measuring range	Is	mA	-160		160	
Number of secondary turns	Ns	ı		5000		
Theoretical sensitivity	G_{th}	mA/A		0.2		
Supply voltage	V _C	V	±15		±24	@ ±5%
Current consumption	<i>I</i> _C	mA		24 + I _S		
Zero offset current	I _O	mA	-0.4		0.4	
Thermal drift of offset current	I _{OT}	mA	-0.4		0.4	@ -40℃~85℃
Residual current@ I_P =0 after 3 × I_{PN}	I _{OM}	mA	-0.2		0.2	
Sensitivity error	\mathcal{E}_{G}	%	-0.4		0.4	Exclusive of IOE
Linearity error 0/ _{PN}	\mathcal{E}_{L}	% of I _{PN}	-0.1		0.1	Exclusive of I _{OE}
Accuracy@ I _{PN}	X	% of I _{PN}	-0.5		0.5	Exclusive of I _{OE}
Response time@ 90% of I _{PN}	t _r	μs			1	
Frequency bandwidth(-1dB)	BW	kHz	100			

Dimensions (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

♦ General tolerance ±0.5 mm

Primary hole Φ30mm
 30mm×10mm

Transduce vertical fastening
 4 or 6pc Φ4.3mm through-hole
 4 or 6pc M4 metal screws

Recommended fastening torque 0.9 N•m (±10%)

♦ Connection of secondary Molex 6410

♦ Transduce horizontal fastening 4pc Φ4.3mm through-hole 4pc M4 metal screws

Recommended fastening torque 0.9 N•m (±10%)

Remarks

- I_S and I_P are in the same direction, when I_P flows in the direction of arrow.
- ♦ Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time)are best with a single bar completely filling the primary hole.

This is a standard model. For different applications (measurement, secondary connections...), please contact CHIPSENSE.